ANALYTICAL REPORT Prepared by Roy F. Weston, Inc.

Cornell Dubilier Electronics
S. Plainfield, NJ
Volume 1 of 1
EPA Work Assignment # 2-262
WESTON Work Assignment # 03347-142-001-2262-01
EPA Contract # 68-C4-0022

ANALYTICAL REPORT

Prepared by Roy F. Weston, Inc.

Cornell Dubilier Electronics S. Plainfield, NJ

August 1997

EPA Work Assignment No. 2-262 WESTON Work Order No. 03347-142-001-2262-01 EPA Contract No. 68-C4-0022

> Submitted to S. Burchette **EPA-ERTC**

K. Robbins Task Leader V. Kansal

Analytical Section Leader

Project Manager

Analysis by: REAC .

Kiber

Prepared by: G. Karustis

Reviewed by: M. Barkley

Table of Contents

·			
Topic		Page N	Number
Introduction		Page	1 .
Case Narrative		Page	1
Summary of Abbreviations		Page	3
· · · · · · · · · · · · · · · · · · ·			•
Section I			•
Analytical Procedure for PCBs in Air		Page	. 4
		Page	6
Analytical Procedure for PCBs in Dust		Page	8
Analytical Procedure for Lead and Cadmium in Air		Page	9
Analytical Procedure for Lead and Cadmium in Dust	Table 1-1	Page	10
Results of the Analysis for PCBs in Air	Table 1.1	_	11
Results of the Analysis for PCBs in Dust	Table 1.2	Page	
Results of the Analysis for Lead and Cadmium in Air	Table 1.3	Page	13
Results of the Analysis for Lead and Cadmium in Dust	Table 1.4	Page	14
Section II			
QA/QC for PCBs		Page	15
Results of the Surrogate Recoveries for PCBs in Air	Table 2.1	Page	16
Results of the MS/MSD Analysis for PCBs in Air	Table 2.2	Page	17
Results of the Surrogate Recoveries for PCBs in Dust	Table 2.3	Page	18
OA/QC for Lead and Cadmium in Air	14010 110	Page	19
Results of the QC Standard for Lead and Cadmium (Air)	Table 2.4	Page	20
Results of the Laboratory Control Standard for	14010 2.4	1 110	
	Table 2.5	Page	21
Lead and Cadmium (Air)	Table 2.5	rugo	21
Results of the Media Spike/Media Spike Duplicate Analysis	Table 2.6	Page	22
for Lead and Cadmium in Air	1 aut 2.0	1 agc	
Results of the Reagent Spike Analysis for Lead and Cadmium	Table 2.7	Doga	23
in Air	Table 2.7	Page	24
QA/QC for Lead and Cadmium in Dust		Page	24
Results of the Analysis of the Laboratory Control Standard for		D	25
Lead and Cadmium in Dust	Table 2.8	Page	25
Results of the Duplicate Analysis for Lead and Cadmium		_	26
in Dust	Table 2.9	Page	26
Results of the Matrix Spike Analysis for Lead and Cadmium	•	_	
in Dust	Table 2.10	Page	27
Section III			
Communications		Page	28
Chains of Custody		Page	29
Cimina of Custous		J	
Appendix A Data for Lead and Cadmium in Air		Page	G 250 01
Appendix B Data for Lead and Cadmium in Dust		Page	G 290 01
Appendix C Data for PCBs in Air			G 318 01
Appendix C Data for PCBs in Dust		Page	
Appendix C Data for I CD3 in Dast	•		

Appendices will be furnished on request.

Introduction

REAC, in response to ERTC WA # 2-262, provided analytical support for environmental samples collected at the Cornell Dubilier Electronics Site in S. Plainfield, NJ as described in the following table. The support also included QA/QC, data review and the preparation of a report summarizing the analytical methods, results, and the QA/QC results.

The samples were treated with procedures consistent with those described in SOP #1008 and are summarized in the following table:

COC #**	Number of Samples	Sampling Date	Date Received	Matrix	Analysis	Laboratory
03968	4	6/9/97	6/13/97	Vacuum Dust	Pb, Cd	Kiber
03968	14	6/9/97	6/13/97	Concrete Dust	Pb, Cd	Kiber
08342	12	6/5/97	6/6/97	Air	Pb, CD	REAC
08343	12	6/5/97	6/6/97	Air	PCB	REAC
08400	4	6/9/97	6/11/97	Vacuum Dust	PCB	REAC
08400	14	6/9/97	6/11/97	Chip Dust	РСВ	REAC

* COC # denotes Chain of Custody number

Case Narrative

Lead and Cadmium in Air Package G 250

The data were examined and were found to be acceptable.

PCB in Air Package G 318

The end of sequence calibration check standard of 6/19/97 exceeded the acceptable QC limits for tetrachloro-m-xylene, decachlorobiphenyl and peaks one and two of Aroclor 1248. The data are not affected.

The end of sequence calibration check standard of 6/19/97 exceeded the acceptable QC limits for all five peaks of Aroclor 1248. The data are not affected

The percent recoveries of the surrogate decachlorobiphenyl exceeded the acceptable QC limits for sample 499 (Field Blank). The data are not affected.

\2262\DEL\AR\9708\REPORT

PCB in Dust Package G 441

Because the analyses were run more than 50 days beyond the extraction date, values should be regarded as estimated. Original samples were re-extracted. There is no significant difference in the results.

The continuing calibration check standard CRD3A21A.D exceeded the acceptable QC limit for decachlorobiphenyl (35%). The data are not affected.

The continuing calibration check standard CRD3A01A.D exceeded the acceptable QC limit for decachlorobiphenyl (29%). The data are not affected.

The continuing calibration check standard CRD3A24A.D exceeded the acceptable QC limit for decachlorobiphenyl (34%). The data are not affected.

The end of sequence calibration check CRD3A28A.D exceeded the acceptable QC limits for five peaks of Aroclor 1254. The data are not affected.

Because of the presence of Aroclor 1248 and Aroclor 1254 at ppm concentrations, the samples required high dilutions and the surrogates were not recovered. The data are not affected.

Lead and Cadmium in DustPackage G 290

The data were examined and were found to be acceptable.

Summary of Abbreviations

			•	
AA	Atomic Absorption			
В	The analyte was found in the b	lank		
BFB	Bromofluorobenzene	* * * .		
BPQL	Below the Practical Quantitation	n Limit		
C	Centigrade Centigrade	M Lammt		•
D	(Surrogate Table) this value is	from a diluted com	nle and was not calc	loted
D	- · · · · · · · · · · · · · · · · ·		-	пассо
Dioxin	(Result Table) this result was o			C 1/
Dioxin	denotes Polychlorinated Diben	zo-p-dioxins and Po	hycmormated Diben	zoturans and/or
GI D	PCDD and PCDF			
CLP	Contract Laboratory Protocol		* *	
COC	Chain of Custody			
CONC	Concentration		St. W.	• • •
CRDL	Contract Required Detection I		•	
CRQL	Contract Required Quantitation			
DFTPP	Decafluorotriphenylphosphine		,	•
DL	Detection Limit			
E	The value is greater than the h	ighest linear standa	rd and is estimated	
EMPC	Estimated maximum possible of			
ICAP	Inductively Coupled Argon Pla	asma	•	
ISTD	Internal Standard			
J	The value is below the method	detection limit and	is estimated	
LCS	Laboratory Control Sample			
LCSD	Laboratory Control Sample Di	plicate	•	
MDL	Method Detection Limit			
MQL	Method Quantitation Limit			
MI	Matrix Interference			
MS	Matrix Spike			
MSD	Matrix Spike Duplicate	•		
MW	Molecular Weight	•		
NA NA	either Not Applicable or Not A	iloblo		
NC NC	Not Calculated	valiable	•	
NR				
	Not Requested			
NS % D	Not Spiked		• • • •	
% D	Percent Difference		•	
% REC	Percent Recovery			
PQL	Practical Quantitation Limit	•		
PPBV	Parts per billion by volume			
QL	Quantitation Limit			
RPD	Relative Percent Difference	•		
RSD	Relative Standard Deviation		•	
SIM	Selected Ion Mode		•	
TCLP	Toxic Characteristics Leaching	g Procedure		
U	Denotes not detected			
m^3	cubic meter kg	kilogram	μ g	microgram
L	liter g	gram	pg	picogram
mL	milliliter mg	milligram	• =	
μ L	microliter			
*	denotes a value that exceeds th	e acceptable OC lin	nit	
·	Abbreviations that are specific			atnotes on that
	table	to a particular laure	z are explanieu in 100	raiotes on mal
Davi	sion 3/7/97	•		
Kevi	SIUII <i>3/ // 7 /</i>		4	

Analytical Procedure for PCBs in Air

Extraction Procedure

The entire wipe was spiked with a surrogate solution consisting of tetrachloro-m-xylene and decachlorobiphenyl, and was sonicated with hexane. The combined extracts were concentrated to 3.0 mL.

Gas Chromatographic Analysis

The extract was analyzed for PCBs using simultaneous dual column injections. The analysis was done on an HP 5890 GC/ECD system, equipped with an HP 7673A automatic sampler, and controlled with an HP-ChemStation. The following conditions were employed:

First Column DB-608, 30 meter, 0.53mm fused silica

capillary, 0.83 μ m film thickness

Injector Temperature 250° C

Detector Temperature 325° C

Temperature Program 150°C for 1 minute

7°C/min to 265°C 18 min at 265°

Second Column Rtx-1701, 30 meter, 0.53mm fused silica

capillary, 0.50 μm film thickness

Injector Temperature 250° C Detector Temperature 325° C

Temperature Program 150° C for 1 minute

7°C/min to 265°C 18 min at 265°

The gas chromatographs were calibrated using 5 Aroclor 1254 standards at 250, 500, 1000, 2000, and 5000 μ g/L. The response from each mixture were used to calculate the response factors (RF) of each analyte. The average RF was used to calculate the concentrations of PCB in the samples. Quantification was based on the DB-608 column (signal 1), and identity of the analyte was confirmed using the Rtx-1701 column (signal 2). A fingerprint gas chromatogram was run using each of the seven Aroclor mixtures.

The PCB results, listed in Table 1.1, were calculated from the following formula:

$$C_u = \frac{DFxA_uxV_t}{RF_{ave}xV_i}$$

where

 C_n = Concentration of analyte ($\mu g/100 \text{ cm}^2$)

DF = Dilution Factor A_u = Area or peak height

V_t = Volume of sample (mL) RF_{ave} = Average response factor

 V_i = Volume of extract injected (μ L)

Response Factor calculation:

The RF for each specific analyte is quantitated based on the area response from the continuing calibration check as follows:

$$RF = \frac{A_u}{total \ pg \ injected}$$

where

 A_{ij} = Area or peak height

and

$$RF_{ave} = \frac{RF_1 + ... + RF_n}{n}$$

where

n = number of samples

Revision 7/11/94

Analytical Procedure for PCBs in Dust

Extraction Procedure

The dust samples were extracted by the Soxhlet method. Thirty grams of sample was spiked with a surrogate solution consisting of tetrachloro-m-xylene and decachlorobiphenyl, 30 g anhydrous sodium sulfate and Soxhlet extracted for 16 hours with 300 mL 1:1 hexane: acetone. The extract was concentrated to 5.0 mL.

Gas Chromatographic Analysis

The extract was analyzed for PCBs using simultaneous dual column injections. The analysis was done on an HP 5890 GC/ECD system, equipped with an HP 7673A automatic sampler, and controlled with an HP-CHEM STATION. The following conditions were employed:

First Column

DB-608, 30 meter, 0.53mm fused silica

capillary, 0.83 µm film thickness

Injector Temperature

Detector Temperature

250° C 325° C

Temperature Program

150°C for 1 minute

7°C/min to 265°C 18 min at 265°

Second Column

Rtx-1701, 30 meter, 0.53mm fused silica

capillary, $0.50 \mu m$ film thickness

Injector Temperature
Detector Temperature

250° C 325° C

Temperature Program

150° C for 1 minute

17°C/min to 265°C

18 min at 265°

The gas chromatographs were calibrated using 5 PCB standards at 250, 500, 1000, 2000 and 5000 μ g/L. The results from each mixture were used to calculate the response factor (RF) of each analyte and the average Response Factor was used to calculate the concentration of PCB in the sample. Quantification was based on the DB-608 column (signal 1) and the identity of the analyte was confirmed using the Rtx-1701 column (signal 2). A fingerprint chromatogram was run using each of the seven Aroclor mixtures; calibration curves were run only if a particular Aroclor was found in the sample

The PCB results, listed in Table 1.2, are calculated by using the following formula:

$$C_u = \frac{DFxA_uxV_t}{RF_{ave}xV_ixWxD}$$

where

 C_{ij} = Concentration of analyte (mg/Kg)

DF = Dilution Factor
A_u = Area or peak height
V_t = Volume of sample (mL)
RF_{ave} = Average response factor

 V_i = Volume of extract injected (μ L)

W = Weight of sample (g)
D = Decimal percent solids

Response Factor calculation:

The RF for each specific analyte is quantitated based on the area response from the continuing calibration check as follows:

$$RF = \frac{A_u}{total \ pg \ injected}$$

where

A, = Area or peak height

and

$$RF_{ave} = \frac{RF_1 + ... + RF_n}{n}$$

where

n = number of samples

Revision 7/11/94

Analytical Procedure for Lead and Cadmium in Air

Sample Preparation

Each wipe sample was transferred to a clean 100 mL beaker and prepared according to reference method NIOSH 7105. The samples were thoroughly mixed with 5 mL concentrated nitric acid and heated on a hot plate until the volume was reduced to 0.5 mL. Additional nitric acid and hydrogen peroxided were added during heating to complete digestion of the wipe pad. After digestion, the samples were allowed to cool to room temperature, transferred to 25 mL volumetric flasks and diluted to 25 mL with ASTM Type II water. The samples were analyzed for all lead and cadmium, by USEPA SW-846, Method 7000 (Atomic absorption) or Method 6010 (Inductively Coupled Argon Plasma-ICAP) procedures.

A reagent blank, reagent blank spike, media blank and media blank spike were carried through the sample preparation procedure for each analytical batch of samples processed. One matrix spike (MS) and one matrix spike duplicate (MSD) sample (prepared using blank wipes) were also processed for each analytical batch or every 10 samples.

Analysis and Calculations

The instruments were calibrated and operated according to SW-846, Method 7000/6010 and the manufacturers operating instructions. After calibration, initial calibration verification (ICV), initial calibration blank (ICB) and quality control check standards were run to verify proper calibration. The continuing calibration verification (CCV) and continuing calibration blank (CCB) were run after every ten samples to assure proper operation during sample analysis.

The metal concentrations in solution, in micrograms per liter ($\mu g/L$) were taken from the read-out systems of the AA and ICAP instuments. The results (in micrograms per wipe, $\mu g/wipe$) were obtained by externally correcting read-outs for final digestion volume.

Final concentrations, (μg /wipe) were given by:

 μ g metal/wipe sample = Ax(V/1000)xDF

where:

 $A = Insrument read-out (\mu g/L)$

V = final volume of processed sample (mL)

DF = Dilution Factor (1.00 for no dilution)

For samples that required dilution to be within the instrument calibration range, DF is given by:

DF = (C+B)/C

where:

B = acid blank matrix used for dilution (mL)

C = sample blank aliquot (mL)

The results of the analysis are listed in Table 1.3.

\2262\DEL\AR\9708\REPORT

Analytical Procedure for Lead and Cadmium in Dust

The subcontract laboratory determined the lead and cadmium concentrations in the samples by preparing them according to USEPA Method 3050 and analyzing them according to USEPA Method 6010. Both procedures are found in SW-846. The results of the analysis are listed in Table 1.4.

Table 1.1 Results of the Analysis for PCBs in Air WA # 2-262 Cornell Dubilier Electronics

Location Volume (L)	PBLK06 - -	069701	003 Colu / Back \$ 96	mbia Storage	Mid Wo	334 ia/ Shelf ork Area 50	Columb Mid Ben	336 bia/ 300 ich Shelf 60	Colu Stora	338 mbia ge Bin 80
	Conc. µg	MDL µg	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3
AROCLOR 1016	U	0.3	7	2.6	12	2.6	18	5.2	33	4.6
AROCLOR 1221	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5
AROCLOR 1232	Ü.	0.3	U	0.3	U	0.3	U	0.3	U	0.3
AROCLOR 1242 AROCLOR 1248	U	0.3 0.3	U 2	0.3 2.6	U 5	0.3 2.6	U 6	0.3 5.2	U 12	0.3
AROCLOR 1248	U	0.3	` . Z	0.3	Ú	0.3	U	0.3	U	4.6 0.3
AROCLOR 1260	ŭ	0.3	Ü	0.3	Ü	0.3	Ü	0.3	Ü	0.3
	A significance in the second second		9		11		24	•	45	
- 1: :-							e et e			
Sample ID _ocation	003 Colun	nbia/	003 Columb	ia/ Pole		o/ Pole	Robald	346 b/ Shelf		348 enceline
Volume (L)	Back F 96		20 Bacl 96		Near B	Breaker 50	In Side E 96	Bay Door 60	90	50
	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3	Conc. µg/m3	MDL µg/m3
AROCLOR 1016	10	2.6	16	5.2	3.7	5.2	0.6	0.3	Ü	0.3
AROCLOR 1221	Ü	0.5	Ū	0.5	Ü	0.5	Ü	0.5	Ŭ	0.5
AROCLOR 1232	υ	0.3	U	0.3	, U	0.3	Ü	0.3	Ū	0.3
ROCLOR 1242	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3
ROCLOR 1248	5 :	2.6	7	5.2	2.3	5.2	0.4	0.3	0.2	
ROCLOR 1254	U	0.3	U	0.3	U	0.3	U	0.3	U	0.3
ROCLOR 1260	U	0.3	U	0.3	, U	0.3	U	0.3	U	0.3
	15		23		6		1	•	(02)	
Sample ID ocation /olume (L)	003 Roadway 96	Corner	095 Field I		095 Lot B					
	Conc	MDL	Conc.	MDL	Conc.	MDL		٠		
	µg/m3	µg/m3	ng	ng	ng	ng				
AROCLOR 1016	U	0.3	U	250	U	250				•
ROCLOR 1016	U U	0.3 0.5	U U	250 500	U	250 500				•
ROCLOR 1221 ROCLOR 1232		0.5 0.3		250 500 250	U U U	250 500 250				•
ROCLOR 1221 ROCLOR 1232 ROCLOR 1242	U	0.5 0.3 0.3	U	500 250 250	U	500				,
ROCLOR 1221 ROCLOR 1232 ROCLOR 1242 ROCLOR 1248	U U U	0.5 0.3 0.3 0.5	U U U	500 250 250 250	U U U	500 250			.•	,
ROCLOR 1221 ROCLOR 1232	U U	0.5 0.3 0.3	U U U	500 250 250	U U U	500 250 250				

· (· b

Table 1.2 Results of the Analysis for PCBs in Dust WA # 2-262 Cornell Dubilier Electronics Based on dry weight

Client ID Location Percent Solid		6119701 - 00	Columbia	389 A Composite 100	Robalo	390 A Composite 100		9891 A Composite 100	Norpak C	
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg
Arocior 1016	U	0.04	U	830	U	1300	U	130	U .	4.2
Aroclor 1221	U	0.08	U	1700	U	2500	U	270	U	8.3
Aroclor 1232	U	0.04	U	830	U	1300	- U	130	U	4.2
Aroclor 1242	U	0.04	U	830	U	1300	U ,	130	U	4.2
Arocior 1248	U	0.04	4500	830	5200	1300	360	130	16	4.2
Arocior 1254	U	0.04	15000	830	16000	1300	2500	130	81	4.2
Arocior 1260	U	0.04	U .	830	U	1300	U	130	U	4.2

Columbia

Client ID Location Percent Solid	Chip	Chip 1 Top Chip 1		895 A 1 Bottom 100	Bottom Chip 2 Top			9897 A 2 Bottom 100	09898 A Chip 3 Top 100	
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg
Aroclor 1016	U	4200	U	4200	U	83	U	4.2	U	83
Aroclor 1221	U	8300	U	8300	U	170	· U	8.3	U	170
Aroclor 1232	U	4200	U	4200	U	83	U	4.2	U	83
Aroclor 1242	U	4200	υ	4200	Ū	. 83	Ü	4.2	Ū	83
Aroclor 1248	21000	4200	19000	4200	190	83	. 42	4.2	400	83
Aroclor 1254	57000	4200	41000	4200	590	83	81	4.2	870	83
Aroclor 1260	. U	4200	U	4200	U	83	U	4.2	U	83

Table 1.2 (Cont) Results of the Analysis for PCBs in Dust WA # 2-262 Cornell Dubilier Electronics Based on dry weight

					•			No	balo	
Client ID Location Percent Solid	Chip 3	A3 A Bottom	Chi	344 A p 4 Top 100	Chip -	345 A 4 Bottom 100		2346 A ip 5 Top 100	0234 Chip 5 10	Bottom
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	U U U U 320 √530 U	83 170 83 83 83 83 83	U U U 28000 17000 U	1700 3300 1700 1700 1700 1700 1700	U U U 31000 15000 U	2100 4200 2100 2100 2100 2100 2100	U U U 150 200 U	42 83 42 42 42 42 42	U U U 94 100 U	17 33 17 17 17 17
Client ID Location Percent Solid	Chip	48 A 6 Top 00	Chip	349 A 6 Bottom	Chip	350 B 7 Top	Chip 7	351 A Bottom	194	
Analyte	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg	Conc. mg/kg	MDL mg/kg		
Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	U U U 1800 1000 U	170 330 170 170 170 170 170	U U U 540 250 U	83 170 83 83 83 83 83	U U U 23 73 U	6.1 12 6.1 6.1 6.1 6.1	U U U U 48 58 U	17 33 17 17 17 17		
	2,800		790		96					

Table 1.3 Results of the Analysis for Lead and Cadmium in Air WA # 2-262 Cornell Dubilier Electronics

	Parameter: Analysis method:		ne Cadmium AA-furnace		Cadmium AA-furnace		Lead AA-furnace		Lead AA-furnace	
Client ID	Location	(L)	Conc µg/m³	DL µg/m³	Conc µg/filter	DL µg/filter	Conc µg/m³	DL µg/m³	Conc µg/filter	DL μg/filter
00331	Columbia/Back Storage	960	0.054	0.0052	-	_	0.971	0.052	_	-
00333	Columbia/Shelf Mid Work area	960	0.037	0.0052	•	-	0.578	0.052	-	•
00335	Columbia/3cd Mid Bench Shelf	960	0.021	0.0052	-	-	0.117	0.052	-	•
00337	Columbia/Storage Bin by Break Room	960	0.011	0.0052	-	-	0.115	0.052	-	-
00339	Columbia/Back Room Work Bench	960	0.013	0.0052		-	0.354	0.052	-	-
00341	Columbia/Pole 20 Back Room	960	0.008	0.0052	-	-	0.253	0.052	-	-
00343	Robalo/Pole Near Breaker	960	0.017	0.0052	-	-	0.417	0.052	-	-
00345	Robalo/Shelf Inside Bay Door	960	0.007	0.0052	-	-	0.185	0.052	-	
00347	Truck Fencline	912	0.005	0.0055	-	-	0.134	0.055	-	-
00349	Roadway Corner	960	0.002	0.0052		-	0.083	0.052	-	-
09553	Field Blank	-	-	-	Ú	0.005	-	-	0.100	0.050
09555	Lot Blank	-	-	-	U	0.005	-	-	0.073	0.050

Table 1.4 Results of the Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics

Based on dry weight

Parameter:		% Solids	Lead		Cadı	nium
Client ID	Location		Conc mg/kg	MDL mg/kg	Conc mg/kg	MDL mg/kg
B 09889	Columbia Composite	97	3800	37	130	5.4
B 09890	Robalo Composite	96	2600	32	120	24
B 09891	Robalo Composite	.97	1500	6.3	24	4.6
B 09892	Norpak Composite	98	1700	6.8	44	5.0
B 09894	Chip 1 - Top	96	1000	5.6	Ū	4.1
B 09895	Chip 1 - Bottom	. 96	68	6.4	U	4.6
B 09896	Chip 2 - Top	99	360	5.8	U	4.2
B 09897	Chip 2 - Bottom	98	48	5.3	Ü	3.9
B 09898	Chip 3 - Top	97	71	4.7	U	3.5
B 02343	Chip 3 - Bottom	98	33	6.9	Ū	5.1
B 02344	Chip 4 - Top	95	100	7.4	9.4	5.4
B 02345	Chip 4 - Bottom	96	22	_5.4_	U	3.9
B 02346	Chip 5 - Top	97	39	5.9	Ū	4.3
B 02347	Chip 5 - Bottom	95	24	8.1	Ū	5.9
B 02348	Chip 6 - Top	99	190	4.4	U	3.2
B 02349	Chip 6 - Bottom	98	16	4.6	Ü	3.4
B 02350	Chip 7 - Top	97	100	7.4	Ü	5.4
B 02351	Chip 7 - Bottom	97	40	6.0	Ū	4.4
Method Blank	-	NA	Ü	7.1	Ü	5.2
	and the second s					

SECTION II

QA/QC for PCBs

Each air sample was spiked with a solution of tetrachloro-m-xylene and decachlorobiphenyl as surrogates. Percent recoveries ranged from 78 to 152 and are listed in Table 2.1. Twenty-nine out of thirty values were within the advisory QC limits.

Sample 500 was chosen for the matrix spike/matrix spike duplicate (MS/MSD) analyses for the air samples. The percent recoveries were 80 and 83 and are listed in Table 2.2. The relative percent difference (RPD), also listed in Table 2.2, was 3. QC limits are not available for this analysis.

Each dust sample was spiked with a solution of tetrachloro-m-xylene and decachlorobiphenyl as surrogates. Percent recoveries, listed in Table 2.3, ranged from 100 to 117. Both reported values were within the acceptable QC limits. Thirty-six other values were from diluted samples and the percent recovery could not be calculated.

Table 2.1 Results of the Surrogate Recoveries for PCBs in Air
WA # 2-262 Cornell Dubilier Electronics

	Percent R	Recovery	
Sample ID	TCMX	DCBP	
			
PBLK06069701	81	126	
500	91	132	
500 MS	103	137	
500 MSD	79	131	
489	87	130	
490	87	130	
491	99	143	
492	78	114.	
493	94	134	
494	87	126	
495	84	119	
496	88	120	
497	104	137	
498	103	144	
499	109	152 *	
•			

TCMX denotes Tetrachloro-m-xylene DCBP denotes Decachlorobiphenyl

	Advisory
	QC
•	Limits
TCMX	60-150
DCBP	60-150

Table 2.2 Results of the MS/MSD Analysis for PCB in Air WA # 2-262 Cornell Dubilier Electronics based on dry weight

Sample ID	Sample Conc (ng)		MS Conc (ng)	MS % Rec	MSD Spike Added (ng)	MSD Conc (ng)	MSD % Rec	RPD %
500	· U	1000	826	83	1000	804	80	3

Table 2.3 Results of the Surrogate Recoveries for PCBs in Dust WA # 2-262 Cornell Dubilier Electronics

	Percent	Recovery
Sample ID	TCMX	DCBP
SBLK06119701	100	117
09889 A	D	D
09890 A	Ď	Ď
09891 A	Ď	Ď
09892 A	Ď	ä
09894 A	Ď	ä
09895 A	Ď	Ď
09896 A	Ď	Ď
09897 A	D	ם ·
09898 A	D	Ď,
02343 A	Ď	D
02343 A 02344 A	D	D ·
02345 A	D	D
02345 A 02346 A	D	D
02346 A 02347 A	Ď	D
02347 A 02348 A	D .	D
02348 A 02349 A	D .	Ď
02349 A 02350 B	D	D
02350 B 02351 A	D.	. D
02351 A	U ·	

TCMX denotes Tetrachloro-m-xylene DCBP denotes Decachlorobiphenyl

	Advisory
	QC
	Limits
TCMX	. 60-150
DCBP	60-150

QA/QC for Lead and Cadmium in Air

QC standards TMMA #1 were used to check the accuracy of the calibration curve. The percent recoveries ranged from 92 to 101 and all recovered concentrations were within the 95% confidence limits. The recoveries are listed in Table 2.4.

A NIST standard was also analyzed. The percent recoveries, listed in Table 2.5, were 95 and 100. The 95 % confidence limits are not available for this analysis.

The percent recoveries of the media spike/media spike duplicate (MS/MSD) analyses, listed in Table 2.6, ranged from 87 to 98. The relative percent differences (RPDs), also listed in Table 2.6, were 2 and 12. All four percent recoveries and both RPDs were within the recommended QC limits.

The percent recoveries of the reagent spike, listed in Table 2.7, were 96 and 103. Both percent recoveries were within the recommended QC limits.

Table 2.4 Results of the QC Standard Analysis for Lead and Cadmium (Air) WA # 2-262 Cornell Dubilier Electronics

Metal	Date Analyzed	Quality Control Standard	Conc. Rec µg/L	True Value µg/L	95 % Confidence Intérval	% Rec
						
admium	06/11/97	T140 0#1	4.62	5.00	4.10 - 5.83	92

Table 2.5 Results of the Laboratory Control Standard Analysis for Lead and Cadmium (Air WA # 2-262 Cornell Dubilier Electronics

Metal	Date Analyzed	Quality Control Standard	Rec	True Value µg/Filter	95 % Confidence Interval	% Rec	
Cadmium	06/11/97	NIST Std	0.918	0.97	. NA	95	
Lead	06/10/97	NIST Std	7.45	7.44	NA	100	

Table 2.6 Results of the Media Spike/Media Spike Duplicate (MS/MSD) Analysis for Lead and Cadmium (Air) WA # 2-262 Cornell Dubilier Electronics

Metal	Sample Conc. µg/filter	Spiked Spike µg/filter	l Conc. Dup. µg/filter	Recovere Spike µg/filter	Dup.	% Re- Spike ug/filter	covery Dup. ug/filter	RPD	Recomm Lim % Rec (Advison	it RPD
Cadmium	0.003	1.00	, 1.00	0.960	0.980	96	98	2	75-125	20
Lead	0.073	1.00	1.00	1.045	0.938	97	87	12	75-125	20

Table 2.7 Results of the Reagent Blank Spike Analysis for Lead and Cadmium (Air) WA # 2-262 Cornell Dubilier Electronics

Metal	Reagent Spiked Conc µg/L	Reagent Blank Conc ug/L	Conc Conc		Recommended Limit	
	. 40	0.04			(Advisory Only)	
Cadmium Lead	40 40	0.04 0.2	38.3 41.5	96 103	75-125 75-125	·
, Leau	₩.	0.2	71.5	103	13-123	

QA/QC for Lead and Cadmium in Dust

The percent recoveries of the laboratory control standard, listed in Table 2.8, were 92 and 96. Both percent recoveries were within the recommended QC limits.

Sample B 09889 was chosen for the duplicate analysis. The relative percent differences, listed in Table 2.9. were 1 and 14 and both results were within the acceptable QC limits.

The percent recovery of the matrix spike (MS) analysis, listed in Table 2.10, ranged was 92. One other percent recovery was not calculated because of matrix interference. The calculated percent recovery was within the acceptable QC limits.

Table 2.8 Results of the Analysis of the Laboratory Control Standard for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics

Metal	Spiked Conc mg/kg	Rec Conc mg/kg	% Rec	Recommended Limit		
Cadmium	50	46	92	80-120		
Lead	50	48	96	80-120		

Table 2.9 Results of the Duplicate Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics (based on dry weight)

Metal	Sample ID		Duplicate Analysis mg/kg	RPD	QC Limit
Cadmium	B 09889	133.92	153.36	14	20
Lead	B 09889	3765.97	3735.30	1	20

Table 2.10 Results of the Matrix Spike Analysis for Lead and Cadmium in Dust WA # 2-262 Cornell Dubilier Electronics (based on dry weight)

Metal	Sample ID	Sample Conc mg/kg	Spike Conc mg/kg	Rec Conc mg/kg	% Rec	QC Limits
Cadmium	B 09889	133.92	7.24	107	NC	80-120
Lead	B 09889	3765.97	98.82	3857.02	92	80-120

SECTION III

Roy F. Westen, Inc.
GSA Raman Depot
Building 209 Annex (Bey F)
2890 Woodbridge Avenue
Edison, New Jersey 08837-3679
908-321-4200 • Fax 908-494-402

Kiber Environmental Services 3786 Dekalb Technology Parkway, N.E. Atlanta, GA 30340

Attn: Denise Ward

12 June 1947

Project # 3347-142-001-2262 Cornell Dubilier

As per Weston REAC Purchase Order number 81306, please analyze samples according to the following parameters:

Analysis/Method	Matrix	# of samples
Pb & Cd/ SW-846-6010 or Series 7000	Concrete Chips	18
Data package: see attached Deliverables Requirements		

Samples are expected to arrive at your laboratory on June 13,1997. All applicable QA/QC analysis as per method, will be performed on our sample matrix. Preliminary sample result tables plus a signed copy of our Chain of Custody must be faxed to REAC 7 business days after receipt of the samples. The complete data package is due 21 business days after receipt of the samples. The complete data package must include all items on the deliverables checklist.

Please submit all reports and technical questions concerning this project to John Johnson at (908) 321-4248 or fax to (908) 494-4020. Any contractual question, please call Cynthia Davison at (908) 321-4296. Thank you

Sincerely,

Misty Barkey

Data Validation and Report Writing Group Leader

Roy F. Weston, Inc. / REAC Project

MB:jj

Attachments

CC.

R. Singhvi

S. Burchette

2262\non\mem\9706\sub\2262Con1

V. Kansal

Subcontracting File

Y. Exume

C. Davison

K. Robbins

M. Barkley

REAC, on, NJ (908) 321-4200 EPA Contract 68-C4-0022 CH, JF CUSTODY RECORD

CODMELL DUBLIER Project Name:

03347-162-001-2262-01 Project Number: 321-4200 Phone: RFW Contact:__

08342 No:

SHEET NO. OF 1

560691	Sample Identification						Analyses Requested					
REAC #	Sample No.	Sampling Location	Matrix	Date Collected	# of Bottles	Container/Preservative		P15 Cd	Volume (1)			
501	00531	Cannon / CATIONS	14	6/5/87	1	CASSETTE	/WHELPH		960			
502	00333	COLUMPIA SHELF MIN	4	6/5/97	\				960			
503	CO 335	CUL MENT BY MO SHEET CUL MENT BY BY BY END CUL MENT BY BY ENCH ROWN CUL MENT WHERE BY BY	A	6/5/97	\			<u> </u>	960	\longrightarrow		
504	00337	(CLUMBA) BY BREAK BOM	,A	6/5/97	\			V	960			
505	00339	Columbial winex Birli	A	6547	1			<u> </u>	960	 	7	
506	00341	COLUMBIA/ BACKAROM	A	6/5/97	1	·		<u> </u>	960	₩	$1 \rightarrow$	
507	00343	ROBALO BREAKER	A	6/5797					960	 	+	
508	00345	ROCAL BAY STOR	A	6/5/97	1				960	1	1	
509	00347	TRUCK FENCLONE	/+	6/5/97		ļ			912	\longrightarrow	4	
510	00349	RUADWAY COMMER		61497					960	 	 	
5//	09553	FIELD BLANK	A	6/5/97		<u> </u>			<u> </u>	 /	1	
512	09555	LOT/MS/MSO	A	6/5/97	3_	1 ~		V	0	 		
<u> </u>												
			ļ			1						
	<u> </u>									 	+	
					 		·		 	 	+	
			 						 	 	+	
	<u> </u>					1 7				 		
			<u> </u>	<u> </u>		 	·					
<u></u>	<u>]</u>		<u> </u>	Speci	al Instructions:	_!		<u> </u>		<u> </u>		

Matrix:

DS -

DL -

SD -Sediment

Other

Drum Solids Drum Liquids SW -

SL -

PW-GW -

Potable Water Groundwater

Sludge

W-Surface Water

S-

0-

Soil Water Oil

Air

ms/msid-msdia sake/MEDIA SPIKE PURICATE

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF **CUSTODY#**

Items/Reason	Relinquished By	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By	Date	Time
	this Set	6/6 A7	YEXUME	6/4/97	10:30	ALLANALYSIS	Y. EKUME	4497	HarrisKalinky	6/6/47	730
								-	. / .	<u> </u>	<u> </u>
				ļ				 			
				 	 ` -			 	num.		

FORM #4

REAC,	son,	NJ
(908) 32	21-4200	
EPA Co	ontract 6	8-C4-0022

Project Name: CONNELL PUBILIER Project Number: 03347-142-001-2262-01 RFW Contact: (POBBINS

Phone: 321-4200

08343

SHEET NO. COF____

Sample Identification **Analyses Requested**

	REAC#	Sample No.	Sampling Location	Matrix	Date Collected	# of Bottles	Container/Preservative	PCBS	VOLUME(L)	· / I	ار
	489	CO33?	LU MBIA BRACKE	A	1/5/97	(WHIRLAMY NOWS	V	960		/
	490	CO334	CULMBIA LUNCE MEA		, 1	(V	960		
	421	00336	CLLMBA/BAY SAS MID			1		~	960		1/4
	445	00338	(CL MBIA) BY BAKAUN					سن ا	1080		/
	443	00340	COLUMBIN WORK BENCH			(~	960		1
	491	00342	COLUMBA A BELFORM	\Box		.(·	~	960		
	495	00344	ROBIN PELE NEAR		·				960	10	\overline{A}
Г	49/2	00346	POBNO/SIGE BAYOUR						960	VI	X
	497	84500	TRICK FENCELINE			į			960 960		
	498	<i>0</i> 0350	PORDWAY CORNER					V	960	/	
	494	09554	FIRES BLANK		1	l	· ·	V	0	/	
	500	09556	Lor/ms/msD	\vee		3	7	V	.0	1 1000	
	1									and The State of t	
										÷c.	-
\mathfrak{A}						1					
ಪ											

Matrix:

DL -

X -

SD -Sediment DS -

Other

Drum Solids **Drum Liquids**

PW-GW -SW-

SL -

Potable Water Groundwater Surface Water

Sludge

S-W-0 -

Α-

Soil Water Oil

Air

Special Instructions: (L),-LITTERS

MS/MSD - MEDIA SPIKE MEDIA SPRICE PUPLICATION FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF **CUSTODY#**

Items/Reason	Relinquished By	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By	Date	Time
ALL ANAWSIS	Milale	6/6/97	Y. EXYME	6/6/97	10:30	ALL ANDCYSUS	Y EX4ME	6/497	H. Nular	96/17	2:30 F
		1/	-						10/10	277	
			<u> </u>								
									×.	1	
	· · · · · · · · · · · · · · · · · · ·										

REAC, son, NJ (908) 321-4200 EPA Contract 68-C4-0022 706014-2532

Project Name: CORNELL

Project Number 03347-RFW Contact: Ken

No:

03968

SHEET NO. OF

1000		Sample Ide	entific	ation		Analyses Requested					
REAC#	Sample No.	Sampling Location	Matrix	Date Collected	# of Bottles	Container/Preservative	Pb	Cd	\		
7	B04884	CO 14M bia Computer	X-1	6/9/97		8-03 Poly/ICE		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1\		
2		Robalo Composite		i		01		/			
3	30989	Robalo Combosito				,		V			
4	B09892	Worpak Composite			<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1.			
5	B09894	Chibl- Tob	X-2			407 HOSS/ICE				/	
6	B09895	Chipl-Bottom							11/31	/	
7	809896	Chib2- Top		<u> </u>						/	
8	B09 897	Chib2 Bottom			 	<u> </u>		 	+		
9		Chib3- Top		ļ	1-1			 	 		
10	BO2343	4hlb3-Bottom	 - - - - - - - - - 					<u> </u>	 	\	
Q //		thip4- Tob	└		1-1				1 (R)	 \ 	
12/2		thib4 Bottom	1	ļ	 			-	1/5-1		
6 /3	B02346	ship 5- Top	 		 - 			+	+	123	
	BUL347	chib 5 - Bottom	 		1-1-1				+7-	1.25	
9 15	BO2 348	thibe Tob	 		 			 	+/	1	
1/6	802 549	Chip- Bottem	₩-	 	+	B2-02 Glass Ice		 	- /		
17	A023.50	Chip7- Tob	1.	 		DETA GROUTER		 	/ .	 \	
18	HO2351	chip7- Bottom	+-	1 mg	1 4	<u> </u>		MF	4	1) 1/10 1) 1/10	
<u> </u>			 	The state of the s	+			100		1 25,035	
Matrix	<u> </u>	<u> </u>	Ь	Spec	ial Instructions:						

SD -DS -

Sediment **Drum Solids Drum Liquids**

Other

GW -

Potable Water Groundwater SW -

Surface Water

Sludge

X-1. Vacuum Dust X-2- Concrete Chip Dust

Oil

Soil

Water

PECID AT 6.0°C

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF CUSTODY # 08 400

Items/Reason	Relinquished By	Date	Received By	Date	Time	Items/Reason	Relinquished By	Date	Received By	Date	Time
411/Analox	M.Tres beboils	6/12/5	Duland	4/3/97	0930						
14777777777777777777777777777777777777	4.10	71711								<u> </u>	
				1				<u> </u>		L	9.04

FORM #4

REAC, (908) 321-4200 EPA Contract 68-C4-0022

OF CUSTODY RECORD

Phone: 4298

Project Name: Cos Nell Dusilion Project Number: 03347 - 142-601-2262-01

No:

FOR SUBCONTRACTING USE ONLY

08400

SHEET NO. 1 OF 1

٠.	0611197		Sample Id	entifica	ation			Analyses Requested						
	REAC#	Sample No.	Sampling Location	Matrix	Date Collected	# of Bottles	Container/Preservative	PCBS	APB,CO 1					
	723	09859AB	Combine (parity	×W	6/9/97	1	glass for / None	V	4.7					
	74	09890AB	Rebula Surposite	XŒ	6/9/97	7		1						
L	725	07391AB	Robilo Competite	との										
1	76	01872AB	Marsacco mo de											
	<u>717</u>	8535 (C)	cnipl top	X(3)	. /.									
L	74	07895BA	Chip + Button											
ļ	<u> 729</u>			رديلا										
L			Chip & Botton											
				70										
L		05343BA	Chip3 Botton					1						
,	733	0534484	Chip4 top	7 (D)				1331						
·	734_	0236204	Chip & Battom		 	ļļ		1 11						
ŀ			Chip5tap	<u>کو</u>										
ŀ	736	0534 384	Chip 5 Betton	⊁ ②										
;	737	0234 80A	chip6 tep	× (3)					 					
\$	738	०८३५ सम्ब		y (3)			\	1						
?	739	0 2 3 3 084		10) V	(T / 2 T	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		V	 					
	-740	0235 (44	Chip 7 Bitten	 0	6/9/97	 	gloss jar / Nove		 					
'									 					
<u> </u>	Aatriv.					al Instructions			¥LL					

RFW Contact: K. Rubbins

SD -DS -

Sediment **Drum Solids** Drum Liquids GW -SW - Potable Water Groundwater

Soil Water

W-0 -

Surface Water

Other - Vac usin SL -(3) Chip Dust

Sludge

Oil Air

PCR analysis for Dust Samples

FROM CHAIN OF **CUSTODY#**

Items/Reason	Relinquished By	Date	Received By	Date	Time	items/Reason	Relinquished By	Date	Received By	Date	Time
ell /Luxlysto	1 Enlow	6/9/197	YEXUME	Claler	(0:00	ALCANALYSIS	YEKUME	4(118)	H- Strepen	6/11/97	11:01
18			Y. EDUM	6(11/57	100	XAF Ph.Cd	Y-EXUME	6/11/57	1 ol leman	W1193	11:001
		:									
							7				
ORM #4											8/94

8 samples collected from Bldy 5/5/4 PCBs (Aroclar 1016 and 1248) detaled in 11 samples concentration rander to 45 mg/m3. OSHA PEL (Aroclor 1242) 1000 peg/m3 500 peg/m3 (Aroclar 1254) Cd detected in =11 sangles collected concentration range 0.007 to 0.054 pylms 08AA PEL 200 mg/m3 Po detreted mall sangles Concentration range 2.00.115 to 0.971 08HA PEL 50 µg/m³

Dust

Composite Dust soughes collected from

3 building (5 5A \$ 18)

PCBs (Aroclar 1248 \$ 1254) detected in all
sumples concentration (total PCBs) rung from

97 to 21,200 unglky
Ed 4.84 24 to 120 mylky

Concrete

Po 4.84 1500 to 3800 mylky

Concrete

PCBs (Aroclar \$ 1248 \$ 1254) detected in

pull samples collected from \$ Building 5,

54 \$ 18 concentration rungs as

to 78,000 mg/kg.

Pb (all) 16 to 1,000 mg/kg

Will Warr soundes collected analyzed for PCB, Leed & Cadminu Arodor 1248 A of W 50.6 to 33 cylus
Arodor 1248 A of W 0.2 - 12 cylus
Arodor 1254 10 10 0.2 - 12 cylus
Totals

Totals 10 0 10 002 to 05 luglus
6 007 to 60 05 105 105 10 of 10 0.083 to 0.97 luglis · 113 to .971 I composite dubrandes collected 484 Arodor 1248 16 to 4500 mg/kg Brodor 1254 81 to 16000 mg/kg totals pets 97 to 21,200 mg/8/6 296) 404 Pb 1500 to 3800 mg/kg

ANALYTICAL REPORT

Prepared by Roy F. Weston, Inc.

Cornell Dubilier Electronics S. Plainfield, NJ

August 1997

EPA Work Assignment No. 2-262
WESTON Work Order No. 03347-142-001-2262-01
EPA Contract No. 68-C4-0022

Submitted to S. Burchette EPA-ERTC

K. Robbins

Task Leader

V. Kansal

Date

Analytical Section Leader

E. Gilardi

Project Manager

Analysis by:

REAC Kiber

Prepared by:

G. Karustis

Reviewed by: M. Barkley

Conquete

14 surdes Inou Marchall

Avodor 1248 (all) 42 to 31,000

Avodor 1254 (all) 58 to 57,000

Avodor 1254 (all) 58 to 78,000 to 8%

Cd (10 f 14) 9.4

Pb (all) 16 to 1,000

Cd Pb 1254 005 REAC, son, NJ (908) 321-4200 EPA Contract 68-C4-0022

CHA OF CUSTODY RECORD

Project Name: CONNELL PUBILIER

Project Number: 03347-142-001-2262-01

RFW Contact: L POBBINS Phone: 321-4200

No: 08343

SHEET NO. OF_

060647 Sample Identification **Analyses Requested** PCB3 VOLUME (L) Container/Preservative # of Bottles Sample No. Matrix **Date Collected Sampling Location REAC#** CU33? (4 MOIN BERNEY WHIPLANC! NOWS 960 960 CULMBIA FUNCE PREA CO334 960 CC350 1080 00338 960 00340 960 00342 960 *0*0344 90 00346 ROMO/SHELF NE 491 960 00348 TACK FENCELINE 497 960 498 COSSO POROVAY CORNER 0 09554 FIRES BLANK 494 09556 LUT/MS/MSD 500

Special Instructions: Matrix: (L),-LITTERS PW-Potable Water SD -Sediment Water GW -Groundwater **Drum Solids** MS/MSD - MEDIA SPIKE Surface Water **Drum Liquids** SW -MEDIA SPRICE PUPLICATES Sludge.

FOR SUBCONTRACTING USE ONLY

FROM CHAIN OF CUSTODY #

Items/Reason	Relinquished By	Date	Received By	Date	Time	items/Reason	Relinquished By	Date	Received By,	Date	Time
ALL ANMINGS	this She	6/6/97	V. EXYME	6/6/97	10:30	ALL ANDLY SU	Y EX4ME	6/497	H. Nohar	16/17	2.30A
7100/71015		-1-11								, , , <u> </u>	
				1			• • • • • • • • • • • • • • • • • • • •	,		1 .	
		1		1				1		, ,	
		-	 	1	 			1	<u>.</u>		
		<u> </u>	1			/ 					8/94